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Abstract. In this paper, we consider the multiple line detection
problem on the basis of a data points set coming from a number of lines
not known in advance. A new and efficient method is proposed, which
is based upon center-based clustering, and it solves this problem quickly
and precisely. The method has been tested on 100 randomly generated
data sets. In comparison to the incremental algorithm, the method gives
significantly better results. Also, in order to identify a partition with the
most appropriate number of clusters, a new index has been proposed for
the case of a cluster whose lines are cluster-centers. The index can also be
generalized for other geometrical objects.

1. Introduction

Let A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ ∆ ⊂ R2, ∆ = [0, a]× [0, b], be a data points set coming from
k ≥ 2 lines
(1.1) `j ≡ ujx+ vjy + zj = 0, u2

j + v2
j 6= 0, j = 1, . . . , k,

in the plane not known in advance that should be reconstructed or detected. Let us suppose that data
coming from a line are homogeneously distributed around that line, such that random errors from normal
distribution with expectation 0 are added to uniformly distributed points on the line in the direction of
a normal.

The multiple line detection problem finds application in various fields, such as computer vision and
image processing [5, 11], robotics [22], laser range measurements [6], and crop row detection in agriculture
[10, 25], etc.

Many approaches to this problem can be found in the literature. The Hough transform is the most
popular application [4, 13]. This method assigns to every point a = (x, y) ∈ A a set of all lines passing
through that point. In this way, the point is represented by means of a set of lines in the Hesse normal
form that are defined by a set of parameters:

{(α, γ) ∈ R2 : x cosα+ y sinα− γ = 0}.
In other words, point a ∈ A is represented by a set of points (α, γ) ∈ R2 that lie in the so-called Hough
plane. The original points close to one of the lines intensify the points in the Hough plane. Various line
detection algorithms are based on recognizing the most intensive points in the Hough plane. The main
drawback is that algorithms based on Hough transforms are slow and various approaches have been used
to overcome this problem. E.g., [5] presented an improved voting scheme for the Hough transform for
real-time line detection. Line and circle detection based on Hough transforms is considered in [11].

The other group of methods is based on the center-based clustering approach, where one of the first
papers is [19]. In relation thereto, [1] considers the clusterwise linear regression problem by using the
incremental method (see also [2, 18]), and a line detection algorithm based on probabilistic clustering is
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proposed in [3] and compared to the fuzzy clustering approach in applications to real-world images. [25]
proposes a combination of center-based clustering and total least squares for the purpose of solving the
crop row detection problem in agriculture.

The paper is organized as follows. In the next section, we define a general center-based clustering
problem and narrow it down to the multiple line detection problem. We also briefly describe the main
methods adapted to solve this problem, i.e. the k-means and the incremental algorithm and propose a
construction of a random data set coming from a number of lines in the plane. After that, a new proposed
method is described in Section 3. Furthermore, a new index is proposed for recognizing a partition with
the most appropriate number of clusters whose cluster-centers are lines. The proposed method has been
tested on 100 randomly generated data sets. Finally, some conclusions are given in Section 4.

2. The multiple line detection problem as a special center-based clustering problem

First, let us briefly define a general center-based clustering problem. Let d : Rn × Rn → R+, R+ =
[0,+∞〉, d(u, v) = (u−v)T (u−v) = ‖u−v‖22, be the least squares distance-like function (see e.g. [9, 16]),
and let A = {ai ∈ Rn : i = 1, . . . ,m} be a finite subset in Rn. A partition Π of the set A is a collection
of nonempty disjoint subsets (clusters) π1, . . . , πk, (1 ≤ k ≤ m) whose union is A. A set of all such
partitions will be denoted by P(A; k).

If to each cluster πj ∈ Π we associate its center cj defined by

(2.2) cj := argmin
x∈conv(A)

∑
ai∈πj

d(x, ai),

then a globally optimal k-partition can be defined as a solution to the following global optimization
problem (GOP):

(2.3) argmin
Π∈P(A;k)

F(Π), F(Π) =
k∑
j=1

∑
ai∈πj

d(cj , ai), c = (c1, . . . , ck).

Conversely, for a given set of points c1, . . . , ck ∈ Rn, by applying the minimal distance principle, we
can define the partition Π = {π(c1), . . . , π(ck)} of the set A consisting of clusters

πj := π(cj) = {a ∈ A : d(cj , a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k,

where clusters πj should be mutually disjoint and where one has to have in mind that every element of
the set A occurs in one and only one cluster. Hence the problem of finding an optimal partition of the
set A can be reduced to the following GOP (see e.g. [9, 15, 20]):

(2.4) argmin
c∈conv(A)k

F (c), F (c) =
m∑
i=1

min
1≤j≤k

d(cj , ai),

better known as the center-based clustering problem. The solutions of (2.3) and (2.4) coincide [18, 20].
The problem of recognizing k lines `1, . . . , `k in the plane will be treated as a special center-based

clustering problem; i.e. the set A will be divided into k-clusters whose centers will be lines `1, . . . , `k. Let
us assume that points coming from any line are uniformly allocated in the neighborhood of that line.

Remark 1. Note that this practically means that our problem can also be treated as a special case
of the multiple segment detection problem (see e.g. [21]), where border points of line segments lie on
different sides of the rectangle ∆.

If the distance from the point ai ∈ A to the line `(u, v, z) ≡ ux+ vy + z = 0, u2 + v2 6= 0 is defined
as:

(2.5) D(`, ai) = (uxi + vyi + z)2

u2 + v2 ,

then according to (2.4), the multiple line detection problem can be defined as the following GOP:

(2.6) argmin
u,v,z∈Rk

F (u,v, z), F (u,v, z) =
m∑
i=1

min
1≤j≤k

D(`j(uj , vj , zj), ai).
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Note that, especially for k = 1, problem (2.6) is reduced to searching for the best total least squares
(TLS) line [14]:

(2.7) argmin
u,v,z∈R

F (u, v, z), F (u, v, z) =
m∑
i=1

D(`(u, v, z), ai).

The function F from (2.6) is a symmetric Lipschitz continuous, but non-convex and non-differentiable
function and GOP (2.6) can have a large number of independent variables. Because of that, direct appli-
cation of some global optimization method would not be efficient.

2.1. Modification of the k-means algorithm. The most popular and most frequently used method for
solving GOP (2.6) is the well-known k-means algorithm. In the case when lines are cluster-centers, this
algorithm will be modified in the following way:

Algorithm 1. (The k-closest line algorithm (KCL))
Step A: (Assignment step) For each set of mutually different lines `1, . . . , `k, the set A should be divided

into k disjoint unempty clusters π1, . . . , πk by using the minimal distance principle

(2.8) πj := {a ∈ A : D(`j , a) ≤ D(`s, a), ∀s 6= j}, j = 1, . . . , k;

Step B: (Update step) Given a partition Π = {π1, . . . , πk} of the set A, one can define the corresponding
line-centers ˆ̀1, . . . , ˆ̀

k by solving GOP’s

(2.9) argmin
u,v,z∈R

fj(u, v, z), fj(u, v, z) =
∑
a∈πj

D(`j(u, v, z), a), j = 1, . . . , k.

If we are able to find a good enough approximation of line-centers, then the KCL algorithm is run
with Step A, and if we are able to find a good enough initial partition, then the KCL algorithm is run with
Step B.

Similarly to the case of ordinary cluster-centers, it can be seen that the sequence of the objective
function values F (n) = F (u(n),v(n), z(n)) decreases monotonically [18, 20]. Therefore the algorithm can
be stopped when the following condition is met for some small εB > 0 (say .005) (see [2]):

(2.10) F (n−1)−F (n)

F (n−1) < εB .

Searching for the line which represents the cluster πj in Step B is solved efficiently according to [14].
First, we determine a covariance matrix:

(2.11) Σj = 1
|πj |

∑
ai∈πj

(cj − ai)(cj − ai)T ,

where cj is the centroid of the cluster πj . The line searched for is a TLS-line (u0, v0)T ((x, y) − cj) = 0,
where (u0, v0) is a unit eigenvector corresponding to a smaller eigenvalue of the matrix Σj .

For solving GOP (2.6) by means of the KCL algorithm we will need a very good initial approximation
ˆ̀1, . . . , ˆ̀

k, i.e. as close to the solution as possible.

2.2. Modification of the incremental method. For solving multiple line detection problem (2.6), we can
find a modification of the well-known incremental algorithm in the literature [1, 2, 18, 25] known as the
Incremental Method for Line Detection (IMLD).

The algorithm is run by some initial center-line ˜̀1. This can be a randomly selected line, but the
best TLS-line is used more frequently [14, 25]. The next line ˜̀2 will be obtained by using the DIRECT
algorithm for the line in the Hesse normal form `(α, γ) ≡ x cosα+ y sinα− γ = 0. Note that in this case
it is not acceptable to search for a line in implicit form as it is used in formula (2.5) since the DIRECT
algorithm necessitates determining the finite domain of the objective function. So, in this case one uses
the Hesse normal form for the next line.



4 R. SCITOVSKI, U. RADOJIČIĆ AND K. SABO

Algorithm 2 (The incremental algorithm for a line in the Hesse normal form)

Input: A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ ∆ ⊂ R2, ∆ = [0, a]× [0, b]; ε > 0;
1: Set r = 2 and GOmin = +∞;
2: According to [14], determine TLS-line ˜̀1(ũ1, ṽ1, z̃1) and calculate F1 =

m∑
i=1

D(˜̀1(ũ1, ṽ1, z̃1), ai);

3: By using the DIRECT algorithm determine

(α̃, γ̃) ∈ argmin
α∈[0,2π],

γ∈[0,
√
a2+b2]

Gr(α, γ), Gr(α, γ) =
m∑
i=1

min{δ(i)
r−1,DH(`(α, γ), ai)},(2.12)

where DH(`(α, γ), ai) = (xi cosα+ yi sinα− γ)2 and δ(i)
r−1 = min{D(˜̀1, ai), . . . ,D(˜̀

r−1, a
i)};

Define ˜̀
r(cos α̃, sin α̃,−γ̃) and set Fr = Gr(α̃, γ̃);

4: To the lines ˜̀1, . . . , ˜̀
r apply the KCL algorithm and denote the obtained partition by

Π̂r = {π̂1(ˆ̀1), . . . , π̂r(ˆ̀
r)};

5: Calculate GO-index value GO(r) according to (3.15);
6: if GO(r) < GOmin, then set GOmin = GO(r) and Π? := Π̂r end if ;
7: if Fr−1−Fr

F1
< ε, then STOP; else set ˜̀1 = ˆ̀1, . . . ˜̀

r = ˆ̀
r and r := r + 1 and go to Step 3 end if ;

Output: Π?.

According to [2], the iterative process stops when a relative objective function value is less than ε, and,
by applying the GO-index defined in Subsection 3.2.1, we obtain the partition with the most appropriate
number of clusters.

Problem (2.12) is most often a nonlinear and non-convex GOP that can have many points of local or
global minima, but it can be successfully solved by using the well-known DIRECT algorithm for global
optimization [7, 8], where the line ˆ̀

r is searched for in the Hesse normal form, where α ∈ [0, 2π] and
γ ∈ [0,

√
a2 + b2].

Example 1. We will consider a line detection problem for a set of data points A defined as in the
next subsection. The initial center line ˜̀1 will be defined as a TLS-line (Fig. 1a). ContourPlot of the
minimizing function from (2.12) for r = 2 points to several points of the local minimum (see Fig. 1b). By
using the DIRECT algorithm we obtain the next center-line ˜̀2 and by using the KCL algorithm we obtain
lines ˆ̀1, ˆ̀2 (see Fig. 1c). Finally, after four iterations, we obtain the solution (see Fig. 1d).
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(a) TLS-line ˜̀1
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(b) ContourPlot
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(d) Lines ˆ̀1, . . . , ˆ̀5

Figure 1. The IMLD algorithm

2.3. Construction of a synthetic set of data points. Let us assume that the points from A coming from
any line `1, . . . , `k are uniformly allocated in the neighborhood of part of that line visible in the rectangle
∆, and their number depends on the length of the line. Our method will be illustrated and tested on
such sets of data. In this subsection, it will be shown how sets of such data can be generated randomly.

A set of data A ⊂ ∆ = [0, a] × [0, b] coming from k lines whose graphs pass through a rectangle ∆
will be defined in the following way. Let h = 2 and N = 300;

First, we choose a random integer k ∈ {2, 3, 4, 5}. After that, we randomly choose a few points Aj , Bj
on the edge of the rectangle ∆ not closer for h from the edges of the rectangle k times , such that they
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do not lie on the same side of the rectangle. Pairs of points {Aj , Bj}, j = 1, . . . , k define k lines `1, . . . , `k
passing through the rectangle ∆ (see Figure 2)

`j(x, y) ≡
{

x − A1
j = 0, A1

j = B1
j

(B2
j − A2

j )x + (A1
j − B1

j )y + A2
j (B1

j − A1
j ) − A1

j (B2
j − A2

j ) = 0, else
.

In order to have sets of data defined in the neighborhood of every line of approximately the same
density, first we will define the number N corresponding to the number of points to be assigned to the
diagonal of the rectangle ∆ (a line with the greatest part visible in the rectangle ∆!). After that, on the
line `j , we will choosemj = dN‖Aj−Bj‖/

√
a2 + b2e equidistantly allocated points Ti = λiAj+(1−λi)Bj ,

i = 1, . . . ,mj , where λi = i/mj , and then to each point Ti we add a random error (ξi, ηi) from Bivariate
Normal Distribution with expectation 0 ∈ R2 and the covariance matrix σ2I, where σ2 = 0.05. In this
way, we have defined a cluster which belongs to the line `j

πj = {as ∈ R2 : as = Ts + (ξs, ηs), s = 1, . . . ,mj}

and the set A = π1 ∪ · · · ∪ πk (see Figure 2). Note that the line `j does not to have to be the center of
the cluster πj . Four different situations with 2, 3, 4, 5 lines are shown Fig 2. The efficiency of our method
will be tested on such sets of data.

0 2 4 6 8 10

0

2

4

6

8

10

(a) k = 2

0 2 4 6 8 10

0

2

4

6

8

10

(b) k = 3

0 2 4 6 8 10

0

2

4

6

8

10

(c) k = 4
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(d) k = 5

Figure 2. Four selected examples with k = 2, 3, 4, 5 lines

3. A new method

As already mentioned in Remark 1, due to the assumption of uniform allocation of points that, in the
rectangle ∆, come from a line, the multiple line detection problem can also be treated as a special case
of the multiple segment detection problem, where border points of line segments lie on different sides of
the rectangle ∆. By using this assumption, we will construct a possible solution to problem (2.6), which
will be called the First Solution. This solution will be used for searching for a globally optimal one.

3.1. The First Solution. The procedure of searching for the aforementioned First Solution will be shown
in Algorithm 3, and algorithm steps will be illustrated by means of a simple example constructed as in
Subsection 2.3, which is shown in Fig. 3a.
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Algorithm 3 (First solution)

Input: A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ ∆ ⊂ R2, ∆ = [0, a]× [0, b]; ε > 0;
1: Define the sets (see Fig. 3b):

B1 = {xi ∈ A : |yi| < ε} (bottom edge) B2 = {yi ∈ A : |a− xi| < ε} (right edge)
B3 = {xi ∈ A : |b− yi| < ε} (upper edge) B4 = {yi ∈ A : |xi| < ε} (left edge)

2: For every set Bj 6= ∅ define a set of centers Bj as a partition with the most acceptable number of
clusters in Bj (see Fig. 3c);

3: Define a set of lines P = {`j : j = 1, . . . ,K}, whose graphs are visible in the rectangle ∆ and intersect
two different sides of ∆ at points from B1 ∪B2 ∪B3 ∪B4 (see Fig. 4a);

4: To the set A apply the minimum distance principle for lines from P. Denote the obtained clusters
by π1, . . . , πK ;

5: For every pair (πj , `j) define a new line ˆ̀
j as the best TLS-line of the cluster πj (see Fig. 4b);

6: To every line ˆ̀
j ∈ {ˆ̀j ∈ P : |πj | > 2} assign the corresponding density ρj = |πj |

|ˆ̀j |
. After that, group the

lines by their densities into two groups. Let ˆ̀1, . . . , ˆ̀
r be a set of lines corresponding to a high-density

cluster;
7: To the set ˆ̀1, . . . , ˆ̀

r apply the KCL algorithm and denote the obtained lines by `?1, . . . , `?r , and the
corresponding clusters by π?1 , . . . , π?r (Fig. 4c);

Output: {(`?j , π?j ), j = 1, . . . , r}.

Let us briefly describe Algorithm 3. For given ε > 0, we consider elements from the set A, which lie
up to ε close to the edge of the rectangle ∆ (Fig. 3b). Projection of these elements onto the corresponding
bottom, right, upper or left edge of the rectangle ∆ gives sets B1,B2,B3,B4 from Step 1. These sets can
be formed by a single loop through the set A.
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(c) Border points

Figure 3. Construction of border points

In Step 2, optimal k-partitions (k = 1, . . . , kj) are defined for every set Bj 6= ∅ by means of the
SymDIRECT global optimization algorithm (see [7, 17]), where an 1-optimal partition is defined as the
arithmetical mean of the set Bj . The number kj is determined by using the Davies-Bouldin (DB) index
[23, 24], where for DB(1) we take the variance of the set Bj . In this way, we determine sets of border
points B1, B2, B3, B4 (Fig. 3c).

Every line from the set of lines P = {`j : j = 1, . . . ,K}, defined in Step 3, is defined such that it
intersects the rectangle ∆ at points from different sets Bj (Fig. 4a). Step 3 is performed such that first
the set B = B1 ∪B2 ∪B3 ∪B4 is defined and after that a set of pairs of points given below is found:

{(IPj , EPj) : IPj = (uj , vj), EPj = (zj , tj), uj 6= zj & vj 6= tj} ⊂ B ×B,
through which lines from P pass.
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(b) Corrected lines
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(c) First solution

Figure 4. Searching for the First Solution

A corresponding cluster πj is associated to every line `j ∈ P in Step 4 by the minimal distance
principle,

πj = {ai ∈ A : D(`j , ai) ≤ D(`s, ai), ∀s = 1, . . . ,K, s 6= j}, j = 1, . . . ,K,
where the distance D(`j , ai) from the point ai = (xi, yi) ∈ A to the line `j : ujx + vjy + zj = 0 from
P is given by (2.5). In this process, it can happen that some cluster is empty or that it has only a few
elements. Such line is definitely not a candidate for the line we are looking for. Therefore, from the set
P, we leave out all lines `j for which the corresponding cluster πj has less than three data from A. In
Step 5, the line ˆ̀

j is associated to all other clusters πj , (|πj | > 2) as the best TLS-line [14] (Fig. 4b).
Note that in this way we actually performed one iteration of the KCL algorithm.

In Step 6, from the set of remaining lines we will extract r ≤ K lines in whose neighborhood we find
a significant number of data points. This will be done such that for every pair (ˆ̀

j , πj) we first define
the density ρj = |πj |

|ˆ̀j |
, where |ˆ̀j | is the length of part of the line ˆ̀

j visible in the rectangle ∆. It can
be expected that the density assigned to the lines searched for is greater than the density assigned to
other lines. Thus a sequence of densities (ρj) will be grouped into two groups by applying the SymDIRECT
algorithm corrected by the ordinary k-means algorithm. The set of lines with greater densities will be
denoted by ˆ̀1, . . . , ˆ̀

r.
By applying the KCL algorithm to lines ˆ̀1, . . . , ˆ̀

r in Step 7 we obtain a partition Π?(r) = {π?1 , . . . , π?r}
with corresponding line-centers `?1, . . . , `?r (see Fig 4c), which will be called the First Solution. Note that
in this example the First Solution consists of four lines, whereby for one subset of the data set A a
corresponding line has not been recognized (see Fig. 4c). Apart from that, the original data set in that
example stems from five lines. This case is a motivation for extending the algorithm in Subsection 3.2.

Example 2. The described method of searching for the First Solution will be tested 1 on 100 sets of
data generated as in Subsection 2.3. Results, i.e. the number of detected lines and necessary CPU-time,
are given in Table 1. The following is specifically stated: CPU-time required for running the SymDIRECT
algorithm while searching for border points in Step 2, CPU-time required for one iteration of the KCL
algorithm in Step 4-5, CPU-time required for running the SymDIRECT algorithm and the ordinary k-means
algorithm in Step 6, and CPU-time required for running the KCL algorithm in Step 7.

1All evaluations were done on the basis of our own Mathematica-modules freely available at:
https://www.mathos.unios.hr/images/homepages/scitowsk/LINES-2.rar, and were performed on the computer with
a 2.90 GHz Intel(R) Core(TM)i7-75000 CPU with 16GB of RAM.
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No. of Lines detected CPU-time
lines 0 1 2 3 4 5 6 (Step 2) (Step 4-5) (Step 6) (Step 7) Total

2 0 0 19 0 1 0 0 0.116 0.017 0.065 0.067 0.265
3 0 0 3 20 1 1 0 0.193 0.047 0.074 0.114 0.428
4 0 0 0 4 21 2 0 0.202 0.089 0.096 0.200 0.587
5 0 0 0 0 6 18 4 0.299 0.175 0.102 0.319 0.895

Table 1. Characteristics of the First Solution

As can be seen in Table 1, the First Solution itself has achieved good results: a set of original lines
was detected in 78% of cases, and total CPU-time is extremely small. However, the set of line-centers of
the cluster π?1 , . . . , π?k̂ sometimes does not include all lines we search for, and sometimes these lines do
not correspond to the original ones.

3.2. Globally optimal solution. As an example considered to be an illustration of our algorithm we will
assume that we have found a globally optimal partition if line-centers of that partition correspond to (up
to some small ε) the original lines.

In some cases, due to a large number of lines in the set P and the distribution of elements in the set
A according to the minimal distance principle, the density of points by individual lines may be distorted.
Hence, in addition to the optimal partition Π?(r), we will consider two more optimal partitions, i.e. the
partition Π?(r−1) with r−1 lines and the partition Π?(r+1) with r+1 lines. This will be done such that
in a sequence of sorted densities we choose the r−1, i.e. r+1, largest and partitions associated thereto,
to which we apply the KCL algorithm.

After that, it will be necessary to decide which of the three optimal partitions, i.e. Π?(r−1) (Fig. 5a),
Π?(r) (Fig. 5b), Π?(r+1) (Fig. 5c), is a partition with the most appropriate number of clusters with
line-centers.

3.2.1. The choice of the most appropriate number of clusters. It has been shown that, when a cluster-
center is not a point but a line segment, none of the known indexes (Davies-Bouldin, Calinski-Harabasz,
Dann, the Simplify Silhouette Width Criterion [23]) has yielded acceptable results in relation to our
problem. The reason for this lies in the fact that these indexes were constructed for spherical or elliptical
clusters. In this paper, we will define a special index for recognizing a partition with the most appropriate
number of clusters if cluster-centers are segments with the initial and end point on different sides of the
rectangle ∆.

Generally, let Π = {π1, . . . , πk} be an optimal partition of the set A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂
R2 whose cluster-centers are lines `j , j = 1, . . . , k. For every cluster πj , we will define the density

(3.13) ρj = |πj |
|`j |

,

where |πj | is the number of elements of the cluster πj , and |`j | is the length of the visible part of the line
in the rectangle ∆.

Note that the cluster, whose center-line lies in the set of lines, from which the data come, will
have a relatively greater density. Due to mutual intersection of lines, this construction may have minor
deviations. Note also that grouping of pairs (πj , `j), j = 1, . . . , k by densities ρ1, . . . , ρk into two groups
can lead to recognition of some of k lines.

Furthermore, if we denote a sequence of densities by ρ = (ρ1, . . . , ρk), and a variance of the sequence
ρ by

(3.14) Var(ρ) = 1
k−1

k∑
j=1

(ρj − ρ̄)2, ρ̄ = 1
k

k∑
j=1

ρj , k ≥ 2,

then we can define the Geometrical Objects index (GO) in the case of lines as cluster-centers
(3.15) GO(k) := Var(ρ).
A lower value of the GO index reveals a better partition.

Example 3. For the data given in Example 2, optimal partitions Π?(r−1), Π?(r), and Π?(r+1) will
be defined as described previously, and based upon the GO index, we will decide which one of them is the



A FAST AND EFFICIENT METHOD FOR SOLVING THE MULTIPLE LINE DETECTION PROBLEM 9

closest to the globally optimal one. The partition with the most appropriate number of clusters will be
the one for which the GO index assumes the smallest value. In the example that was used to illustrate the
method, it is a 5-partition shown in Fig. 5c.
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(a) GO(3) = 31.91
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(b) GO(4) = 13.29
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(c) GO(5) = 0.11

Figure 5. The choice of a partition with the most appropriate number of clusters

Results, i.e. the number of detected lines and necessary CPU-time, are given in Table 2. The following
is specifically stated: CPU-time required for obtaining the First Solution and CPU-time required for running
the KCL algorithm.

No. of Lines detected CPU-time
lines 0 1 2 3 4 5 6 (First Solution) (KCL) Total

2 0 0 19 0 1 0 0 0.265 0.110 0.375
3 0 0 0 24 0 1 0 0.428 0.306 0.734
4 0 0 0 0 27 0 0 0.587 0.514 1.102
5 0 0 0 0 1 26 1 0.895 0.795 1.689

Table 2. Characteristics of a globally optimal partition

As can be seen in Table 2, the percentage of recognition is very high, and total CPU-time remains
small.

3.2.2. Analysis of cases with non-detected lines. Particularly, we will consider examples of data sets
where our method did not detect an optimal partition. These examples are shown in Fig. 6.
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(c) k = 2
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(d) k = 5

Figure 6. The cases with non-detected lines

The data set A in Fig. 6a comes from 5 lines, and our method has detected 6 lines. Two lines have
appeared whose Hausdorff distance in the rectangle ∆ is 0.127, and their slopes differ only in the fourth
decimal place.

The data set A in Fig. 6b comes from 3 lines, and our method has detected 5 lines. Two pairs of
lines have appeared whose Hausdorff distances in the rectangle ∆ are 0.155 and 0.133 respectively, and
their slopes in the first case differ in the second decimal place and in the second case they differ only in
the fourth decimal place.
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The data set A in Fig. 6c comes from 2 lines, and our method has detected 4 lines. Two pairs of
lines have appeared whose Hausdorff distances in the rectangle ∆ are 0.162 and 0.119 respectively, and
their slopes in both cases differ in the third decimal place. There is only the example shown in Fig. 6d
for which our algorithm does not recognize a globally optimal solution.

It can be seen that a small correction in the algorithm would make these cases well recognized, too.
For example, the measure of similarity can be calculated for all pairs of obtained lines by using Hausdorff
distance (see [12, 25]). For each pair of similar lines, only one line should be kept. For such a revised set
of lines, KCL algorithm should be performed once again.

3.3. Comparison with the incremental method. The proposed new method will be compared with the
IMLD algorithm described in Subsection 2.2 on the same 100 data sets as in Example 2, i.e. Example 3.

No. of Lines detected CPU
lines 0 1 2 3 4 5 6 DIRECT KCL Total

2 0 0 19 0 0 0 1 13.403 0.419 13.822
3 0 0 6 18 1 0 0 14.157 0.949 15.106
4 0 0 11 2 14 0 0 20.844 1.929 22.773
5 0 0 12 5 1 9 1 29.090 3.217 32.308

Table 3. The IMLD algorithm

Results, i.e. the number of detected lines and necessary CPU-time, are given in Table 3. The following
is specifically stated: CPU-time required for running the DIRECT algorithm in Step 2 and CPU-time required
for running the KCL algorithm in Step 3.

As can be seen in Table 3, necessary CPU-time is significantly longer and the percentage of recognition
is considerably lower, especially for cases with many lines.

4. Conclusions

The multiple line detection problem occurs in different application areas where it is particularly
important to construct an algorithm that can solve such problems in real time. The method we have
proposed in this paper solves this problem quickly, precisely and with an extremely high percentage
of recognition. With a small software correction, cases shown in Fig. 6a,b,c can also be considered as
resolved and we can say that our method had only 1% of non-detected cases. With appropriate software
optimization, the proposed method could certainly be utilized in applications where a real-time solution
is expected.

For center-based clustering methods used for recognizing geometrical objects, it is important to have
an efficient index for recognizing a partition with the most appropriate number of clusters. A new special
index has been proposed in this paper for cases where cluster-centers are lines. This index could be easily
used in other similar situations.
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Brza i učinkovita metoda za prepoznavanje više pravaca u ravnini

Ključne riječi. Položaj; Prepoznavanje više pravaca u ravnini; Grupiranje na bazi centara; Broj
grupa; Globalno optimalna particija

Sažetak. U ovom radu, promatramo problem prepoznavanja više pravaca u ravnini na osnovi po-
dataka poteklih od većeg broja pravaca, koji nisu unaprijed poznati. Predložena je nova i učinkovita
metoda, utemeljena na grupiranju podataka na bazi centara, koja ovaj problem rješava brzo i precizno.
Metoda je testirana na 100 slučajno generiranih skupova podataka. U usporedbi s inkrementalnom
metodom, predložena metoda daje značajno bolje rezultate. Također, u cilju određivanja particije s na-
jprihvaljivijim brojem grupa, predložen je novi indeks, za slučaj u kome su pravci središta grupa. Indeks
se također može poopćiti na druge geometrijske objekte.
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